© WZL

Aktuelle Themen

bei uns in der Schleiftechnik


Themen


Inkubator Technologiekette

Die ökonomisch und ökologisch nachhaltige sowie effiziente Herstellung von Produkten wird angesichts des zunehmenden globalen Wettbewerbs zur Voraussetzung für produzierende Unternehmen, die ihre Wettbewerbsposition langfristig sichern wollen. Die isolierte Verbesserung der einzelnen Fertigungsprozesse führt dabei nicht immer zwangsläufig zum idealen Kosten- bzw. Zeitoptimum, da die Abhängigkeiten hinsichtlich der Wirtschaftlichkeit, Ökologie und Qualität zwischen den einzelnen Fertigungsprozessen unberücksichtigt bleiben. Die ganzheitliche Optimierung der gesamten Prozesskette ist für ein produzierendes Unternehmen daher entscheidend, um nachhaltig wettbewerbsfähig zu bleiben. Ein wesentliches Potenzial liegt hierbei in der datenbasierten Betrachtung der Abhängigkeiten von Fertigungsprozessen innerhalb einer prozessübergreifenden Fertigungsprozessfolge. Um diese Abhängigkeiten datenbasiert bewerten und Optimierungen ableiten zu können, müssen neue Methoden konzipiert und kontinuierlich weiterentwickelt werden.

Im Inkubator Technologiekette des WZL wird an einer standardisierten Lösung gearbeitet, um prozessübergreifende Fertigungsprozessfolgen digital abzubilden und zu optimieren. Dabei umfasst die Optimierung sowohl eine ökologische Bewertung als auch eine Bewertung der ökonomischen Effizienz. Grundlage für diese Entwicklungen ist eine Fertigungsprozessfolge für die Herstellung von Ritzelwellen für die Getriebe von Elektroautos. Der digitalisierte Prozessablauf besteht dabei aus den Verfahren Drehen, Wälzfräsen, Einsatzhärten, Rundschleifen und Verzahnungsschleifen, wobei über 250 Bauteile mit unterschiedlichen Prozessauslegungen gefertigt wurden. Innerhalb der Untersuchungen für das Rundschleifen konnten hierbei bereits Einflüsse des Drehens auf den Schleifprozess festgestellt werden, die eine Notwendigkeit der übergreifenden Optimierung signalisieren.

More informations:
Eike Reuter, M. Sc
+49 (0) 241 80 25388
E.Reuter@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




Schleiftechnik meets Dichtungstechnik

Höhere Temperaturen und höhere Gleitgeschwindigkeiten in elektrischen Antriebssträngen stellen die Dichtungstechnik vor große Herausforderungen. Damit der Einsatz ressourcenschonender Systeme nicht an der mangelnden Abdichtfähigkeit scheitert, müssen neben den Dichtelementen auch die tribologischen Eigenschaften der Dichtungsgegenlaufflächen durch Schleifen optimiert werden. Geschliffene Dichtungsgegenlaufflächen bestehen aus einer Vielzahl an Einzelstrukturen, die aufgrund ihrer doppelt konvergenten Form bei Wellenrotation zum Aufbau eines für die Dichtlippe verschleißschützenden Schmierfilms führen. Unter ungünstigen Bedingungen kann beim Einstechschleifen die Orientierung der einzelnen Schleifstrukturen jedoch von der Umfangsrichtung abweichen. Dieser sogenannte Mikrodrall ist aufgrund der hohen Förderwirkung bei hohen Drehzahlen besonders schädlich für ein Dichtsystem und muss daher beim Schleifen durch eine wissensbasierte Prozessauslegung vermieden werden. Daher erforscht das Werkzeugmaschinenlabor WZL der RWTH Aachen derzeit in einem Kooperationsprojekt mit den Experten für Dichtungstechnik und Mikrodrallanalyse des Instituts für Maschinenelemente IMA der Universität Stuttgart die Entstehungsmechanismen von Mikrodrall beim Schleifen.

More informations:
Jannik Röttger, M. Sc
+49 (0) 241 80 24959
J.Roettger@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




Folgen sie der Aachener Schleiftechnik auf LinkedIn!

Die Aachener Schleiftechnik – wir sind begeisterte Experten für zukunftsweisende Schleifprozesstechnologien. Schwerpunkte unserer Forschung am WZL der RWTH Aachen sind neue und innovative Werkstoffe, Finishing-, Spitzenlos- und Werkzeugschleifprozesse sowie Technologien zur Erzeugung feiner und funktionale Oberflächen, die datengetriebene Modellierung von Schleifprozessen und modellbasiertes Schleifprozessdesign.
Verfolgen Sie gerne unser neues LinkedIn-Profil auf dem wir Ihnen die Produktionstechnologie von morgen aus unserer Sicht präsentieren werden.

More informations:
Peter Breuer, M. Sc
+49 (0) 241 80 27367
P.Breuer@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




How can a simulation method from astronomy contribute to the study of the grinding behavior of two-phase brittle materials?

Two-phase, brittle-hard materials are widely used not only in the tool industry, but increasingly also in the aerospace industry. Due to the two-phase nature, the materials have unique material properties adapted to the respective application. However, these material properties lead to a more complex machining behavior. In order to analyze the material removal behavior of the grinding process and to be able to design the grinding process, the analogy process single grain scratching is used. The Smoothed Particle Hydrodynamics (SPH) method enables the numerical simulation on mesoscale with moderate computational time. In research projects at WZL, the single grain scratching of WC-Co cemented carbides and of non-oxide ceramics (SiC/SiC) have been developed. The picture shows the engagement of a diamond grain into a non-oxide ceramics workpiece.

More informations:
Alexander Dehmer M. Sc
+49 (0) 241 80 24981
A.Dehmer@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




How does precompetitive university research find application in industry?

The production of bandknives for foam cutting systems requires a profound understanding of the operational behaviour of the bandknives. The operational behaviour essentially depends on the macro- and microgeometry of the cutting edge and is a function of the selected grinding parameters. Together with the company Albrecht Bäumer GmbH & Co. KG, the Group of Grinding Technology of the WZL is researching the knowledge-based design of grinding processes for the production of functionally optimized bandknives within a Central Innovation Programme for SMEs (ZIM).

More informations:
Eike Reuter, M. Sc
+49 (0) 241 80 25388
E.Reuter@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




How can an optimized work rest geometry improve the geometric workpiece properties in centerless through-feed grinding?

Centerless through-feed grinding is a highly productive manufacturing process for the fine machining of large numbers of mainly cylindrical surfaces. With the work rest geometries commonly used in industry today, it is impossible to ensure complete support of the workpiece during the entire grinding process, which can lead to form errors on the ground part. At the Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen University, research is carried out to improve the support of the workpiece through optimized work rail geometries. The project aims to reduce workpiece form errors and workpiece grinding wheel wear.

More informations:
Peter Breuer, M. Sc
+49 (0) 241 80 27367
P.Breuer@wzl.rwth-aachen.de

Interesse an
einer Mitgliedschaft?

. . . . . . .  . . . . . . .

Schleifen


zurück zum Seitenanfang




How does the structure and density of the filtration fleece influence properties of the cooling lubricant?

In the grinding industry, fine filtration is often used to keep the degree of contamination of the cooling lubricant as low as possible. But how does this fine filtration influence the lubricant and its properties? The research conducted at WZL focuses on two aspects of the filtration of cooling lubricants. First, the effectiveness of filtration depends on the structure and density of the filtration fleece. Secondly, a chip layer forms on the fleece during grinding, which also influences the filtration system. To investigate these two aspects, a test rig was set up at WZL. The properties of the cooling lubricant are determined and compared to its original properties. Based on this knowledge, recommendations for cooling strategies in grinding technology are derived.

More informations:
David Braun, M. Sc
+49 (0) 241 80 20392
D.Braun@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




What happens between abrasive media and workpiece in mass finishing?

Mass finishing is a versatile manufacturing technology, which is often the most economical choice. However, the process design is still carried out according to the trial-and-error principle. At WZL we investigate the contact between abrasive media and workpiece, in order to understand how the required process result can be achieved. Therefore, we use the discrete element method (DEM) for numerical modeling of the kinematics of the abrasive media. This gives an insight into how the kinetic energy of the abrasive media is transferred to the workpiece.

More informations:
Marius Ohlert M. Sc
+49 (0) 241 80 27429
M.Ohlert@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you want to understand grinding processes of cemented carbides better?

Combining a high hardness and ductility, WC-Co cemented carbides are a widely used group of cutting tool materials. At WZL, the Smoothed Particle Hydrodynamics (SPH) simulation of cemented carbide grinding processes is researched. The analogous single grain scribing simulation contributes to a reduction of the preliminary tests necessary for the grinding process design and thus to the economic efficiency and sustainability of the grinding process. Furthermore, the results can be transferred to a hybrid AI that combines the methods of knowledge-based process design with the possibilities of artificial intelligence.

More informations:
Peter Breuer, M. Sc
+49 (0) 241 80 27367
P.Breuer@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Still grinding or already polishing?

Power train components with improved surface qualities promise increased efficiency of the power trains and thus lower greenhouse gas emissions. To meet the required surface qualities, elastic bonded grinding wheels offer the potential of surface finishing on the edge of polishing. For a successful application their special characteristics require a new understanding of the grinding process. Through systematic investigations of the operational behavior, this process understanding is being developed and implemented in close proximity to industry at WZL.

More informations:
Eike Reuter, M. Sc
+49 (0) 241 80 25388
E.Reuter@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Herzlich Willkommen im AKWT, Firma AGATHON

Der Arbeitskreis Werkzeugtechnik heißt die Firma Agathon als neustes Mitglied herzlich willkommen!
Wir freuen uns, mit AGATHON in Zukunft an spannenden Themen der Werkzeugtechnik arbeiten zu dürfen. Die Firma Agathon gilt als einer der führenden Hersteller von Werkzeugschleifmaschinen für Wendeschneidplatten und bietet als Hybridverfahren die lasertechnische Vorbearbeitung von hochharten Werkstoffen an. Zudem fertigt die Firma Agathon Normalien.


More informations:
Alexander Dehmer M. Sc
+49 (0) 241 80 24981
A.Dehmer@wzl.rwth-aachen.de



Schleifen



zurück zum Seitenanfang




How to manufacture crack-free wear-resistant coatings by laser cladding and grinding?

Innovative wear-resistant coatings are increasingly demanded for extreme corrosive conditions in order to enhance the life of wear parts. Due to the strong bonding to the substrate, laser cladding is a potential coating technology for welding of anti-corrosive metal matrix composites, such as chromium carbide with nickel as a binder. Since laser cladded coatings tend to form microcracks due to the large temperature gradient, the post-processing of these coatings is highly relevant to prevent failure during its use-phase. Hence, the #WZL and the #IOT conduct cooperative research in order to enable knowledge-based process design for laser cladding and grinding of chromium carbide nickel-based wear coatings.

More informations:
Ulrich Müller M. Sc
+49 (0) 241 80 28188
U.Mueller@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Is post-processing the enabler for additive manufacturing

At the end of last year, we received early Christmas presents from the company Rösler Oberflächentechnik GmbH. One is the R150 DL-2 vibratory finishing system, which is highly relevant for machining components with a complex geometry, such as a blisk. The other is the RSF700 Surf-Finisher, which is characterized by component handling with an industrial robot. This results in targeted local machining of the component and a high level of automation through automated loading and unloading.
This expansion of our plant technology will enable us to cover a wide range of applications in the field of post-processing in the future, e.g. aerospace components. Together with the DAP, we are increasingly addressing the post-processing of additively manufactured components.

More informations:
Marius Ohlert M. Sc
+49 (0) 241 80 27429
M.Ohlert@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you want to understand your varying tool quality when grinding different cemented carbide specifications

For different applications, tools with different cemented carbide specifications are used. Research has shown that due to the varying material properties, the grinding behavior changes for different cemented carbide specifications. The group of grinding technology at WZL has investigated the cause-effect-relationships between the cemented carbide specification, the machining behavior during grinding and the surface integrity in several publicly funded projects and the Research Circle Tooling Technology AKWT. This enabled a knowledge-based grinding process.
For further investigations of the external zone of the ground cemented carbides, transmission electron micrographs have been obtained by the GFE of RWTH Aachen University. These micrographs made it possible to analyze the different effects of the machining on the two phases of the cemented carbide tools.

More informations:
Alexander Dehmer M. Sc
+49 (0) 241 80 24981
A.Dehmer@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Which productivity can be achieved in grinding advanced aerospace materials such as fiber-reinforced non-oxide ceramics (SiC/SiC)

Fiber-reinforced non-oxide ceramics (SiC/SiC) are innovative materials with high growth potential in the aerospace industry due to their advantageous physical properties. Due to the manufacturing-related inaccuracies in shape, the SiC/SiC components often have to be ground to their final dimensions. According to the state of art, the grinding process is characterised by low productivity due to the high demand on surface and subsurface quality. This results in long grinding process times and thus has a negative effect on the profitability of the grinding process. This problem is solved at the WZL through a systematic identification and analysis of multi-stage grinding process strategies with regard to the achievable surface quality and the productivity when grinding fiber-reinforced non-oxide ceramics (SiC/SiC). This approach enables manufacturers of SiC/SiC components to increase their productivity.

More informations:
Sebastian Prinz, M. Sc
+49 (0) 241 80 20393
S.Prinz@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




How fine can a cooling lubricant be filtered without losing its properties during grinding?

In the grinding industry, fine filtration is often used to keep the degree of contamination of the cooling lubricant as low as possible. But how does this fine filtration influence the lubricant and its properties? In order to investigate this problem, a test rig at WZL was set up which makes it possible to expose the cooling lubricant to high shear forces. The properties of the cooling lubricant are determined and compared to its original properties. Based on this knowledge, recommendations for cooling strategies in grinding technology are derived.

More informations:
David Braun, M. Sc
+49 (0) 241 80 20392
D.Braun@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you know how current research results from grinding technology are directly implemented in industrial practice?

The Research Circle Grinding Technology (AKS) of the WZL is bringing together experts in the field of grinding technology and the expertise of companies from the fields of grain and grinding wheel production, grinding machine production, cooling lubricant production, the automotive supplier industry and the energy and aviation industries. This year's online annual meeting focused on new trends such as the grinding of high-temperature resistant materials or assistance systems for process monitoring with machine learning. Many thanks to all members for their participation and the great support during the project realisation.

More informations:
Jannik Röttger, M. Sc
+49 (0) 241 80 24959
J.Roettger@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you already use Machine Learning to monitor your grinding process?

Integration of measuring systems in grinding machines for process monitoring is generally associated with huge financial cost and engineering expense. An economical alternative to the conventional sensor-based ProcessMonitoring is the data-based ProcessMonitoring of the existing signals from the machine control using MachineLearning algorithms. Dive into the current topics of DataScience and IoT as a new member of the research circle grinding technology AKS and participate in the development of the data-based ProcessMonitoring systems of tomorrow in collaboration with the WZL and multiple leading companies in grinding technology.

More informations:
Christian Wrobel, M. Sc
+49 (0) 241 80 27372
C.Wrobel@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you want to optimize your tool grinding process?

Why don’t you take a look at our research projects. For example conducted WZL a project funded by DFG to create a model predicting the grinding wheel wear dependent on the cemented carbide specification. Earlier projects already proved that the grinding of cemented carbides is highly dependent on the cemented carbide specification. This research suggests that in addition to influencing the machining behavior of the workpiece material, the specification also influences the wear behavior of the grinding tool. Single grain scratching experiments and grinding experiments, in combination with the analysis of the workpiece and the grinding tool, are the foundation for the model. These and other questions concerning tool production are also being researched in the Industrial Research Circle Tooling Technology (AKWT).

More informations:
Alexander Dehmer M. Sc
+49 (0) 241 80 24981
A.Dehmer@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Do you want to understand, monitor and optimize centerless grinding processes?

Centerless grinding is considered to be the supreme discipline of grinding processes. A larger number of process setting variables compared to external cylindrical grinding between centers makes process design and optimization very complex. A new concept of process monitoring for centerless grinding is currently researched by the Chair of Industrial Metrology at the Leipzig University of Applied Sciences and the WZL. The researchers from Leipzig have developed a method for oscillation diagnosis in centerless grinding machines using laser-optical sensors. The suitability of this measurement for predicting the workpiece quality is investigated in cooperation with the grinding experts at the WZL.

More informations:
Jannik Röttger M. Sc
+49 (0) 241 80 24959
J.Roettger@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Can thermally induced displacements in grinding machines be predicted and compensated by numerical-analytical methods?

A large part of the energy introduced during grinding is converted into heat. Since the cooling lubricant can not dissipate all the heat, thermally induced displacements in machine components occur, which have a negative influence on the component quality. To avoid component defects due to thermal displacement of machine components, numerical-analytical methods are developed at the #WZL as a part of the transregional collaborative research center SFB TR96. These methods allow a prediction of the thermo-mechanical load on the workpiece during the grinding process as a function of the grinding wheel topography. Thus enabling compensation for thermally inducted displacements.

More informations:
Marc Bredthauer M. Sc
+49 (0) 241 80 25416
M.Bredthauer@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Can grinding win the race of being the most valuable technology for the manufacturing of cutting tools?

In the cutting tool industry, machining of superhard materials like polycrystalline diamond and polycrystalline cubic boron nitride has always been a challenge. Despite the rise of laser processing as promising manufacturing technology, grinding is still widely used in the industry. This is mainly due to the high surface quality and due to the small heat-affected zone. In order to lower the grinding wheel wear and the processing time and thus boost the productivity of grinding superhard materials, we are constantly working on new grinding strategies, grinding tools, and process monitoring solutions in our lab at wzl.

More informations:
Ulrich Müller M. Sc
+49 (0) 241 80 28188
U.Mueller@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




How do I achieve the desired quality with additively manufactured components?

Many companies face the challenge of finding a suitable post-processing solution for their additively manufactured components to meet the tolerances after the heat treatment. In order to provide even better support as an independent partner, WZL has expanded its post-processing research field by three additional machines. The machines, which base on Abrasive Flow Machining (AFM), Robot-guided Centrifugal Finishing (RCF) and Vibratory Finishing (VF), are used in particular for the post-processing of additive manufactured components in cooperation with DAP. Futhermore, they are suitable for any application where components with complex geometry are manufactured with high demands on surface roughness.

More informations:
Marius Ohlert M. Sc
+49 (0) 241 80 27429
M.Ohlert@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Development in grinding of thin-walled components

In aerospace, the #automotiveindustry as well as the energy and medicaltechnology, thin-walled components are increasingly required and designed due to current trends such as resourceefficiency and lightweightconstruction. When grinding thin-walled components, adapted grinding and spark-out strategies are needed for grinding. The relationships between the component wall thickness, the process parameters and the component deformation as a function of the grinding and spark-out strategies for grinding thin-walled components are systematically researched at WZL.

More informations:
Sebastian Prinz M. Sc
+49 (0) 241 80 20393
S.Prinz@wzl.rwth-aachen.de



Schleifen


zurück zum Seitenanfang




Optimierte Schleifstrategien für Turbinenbauteile

Turbinenschaufeln aus hochwarmfesten High-Tech-Werkstoffen müssen im Flugzeugtriebwerk höchsten thermischen und mechanischen Belastungen standhalten. Die hohe Härte und Zähigkeit dieser Werkstoffe erschweren die Zerspanung.
Optimierte Schleifstrategien für die wirtschaftliche Bearbeitung hochwarmfester Werkstoffe werden derzeit im Arbeitskreis Schleiftechnik AKS entwickelt. Dazu wird u. a. der Einfluss der CBN-Kornspezifikation auf die Schleifscheibenstandzeit bei der Bearbeitung von MAR M 247 untersucht. Basierend auf den Untersuchungsergebnissen werden Handlungsempfehlungen zur Produktivitätssteigerung in der industriellen Praxis abgeleitet.
Der AKS ist ein Forschungsnetzwerk mit aktuell 26 Mitgliedsfirmen. Gemeinsam werden zukünftige Trendthemen produzierender Unternehmen identifiziert und relevante Fragestellungen für die Schleiftechnik abgeleitet, die in Forschungsprojekten am Werkzeugmaschinenlabor WZL beantwortet werden. Unternehmen werden befähigt, aktuelle Forschungsergebnisse effizient und frühzeitig im eigenen Betrieb umzusetzen.

Weitere Informationen:
Jannik Röttger M. Sc      
+49 (0) 241 80 24959      
J.Roettger@wzl.rwth-aachen.de



Turbinen Turbinen


zurück zum Seitenanfang